
Course Outline COMP7126 Artificial Intelligence in Games (2/2)

Effective Date 01 September 2016

1. Course Description

Artificial Intelligence in Games is one subject which learns how is Artificial Intelligence (AI) used in games. This course provides students with the techniques, pathfinding, decision making, tactical and strategic AI, how learning works in games and finally how can we design AI-based game. By completing this course, students can explain AI works in games and describe how to implement techniques to embed AI in a game. To understand this course appropriately, students need to pass Artificial Intelligence course.

2. Graduate Competency

Each course in the study program contributes to the graduate competencies that are divided into employability and entrepreneurial skills and study program specific outcomes, in which students need to have demonstrated by the time they complete their course.

BINUS University employability and entrepreneurial skills consist of planning and organizing, problem solving and decision making, self management, team work, communication, and initiative and enterprise.

2.1. Employability and Entrepreneurial Skills

Aspect	Key Behaviour	Key Behaviour				
		_				

Study Program Specific Outcomes

Able to classify problems and to apply design and development principles for specific problems

Able to classify criteria and specifications appropriate to specific problems, plan strategies for their solution and construct appropriate software systems.

Able to construct a solution by applying current technologies

3. Topics

- Introduction
- Game Al
- · Movement: Steering Behaviors
- Movement: Predicting Physics & Jumping
- Movement: Coordinated Movement, Motor Control & Movement in the Third Dimension
- Pathfinding: Djikstra & A*
- · Pathfinding: Hierarchical & Continuous Time Pathfinding
- Decision Making: Decision Tree & State Machines
- Decision Making: Behavior Tree, Fuzzy Logic & Markov Systems
- Decision Making: Goal-Oriented Behavior & Rule-Based System
- Learning: Parameter Modification & Action Prediction
- Learning: Decision Learning
- Project Presentation

4. Learning Outcomes

On successful completion of this course, student will be able to:

- LO 1: Describe how Artificial Intelligence works in Games
- LO 2: Explain concepts of AI Techniques in Games
- LO 3: Apply AI Techniques in building Games
- LO 4: Construct AI-based Games

5. Teaching And Learning Strategies

In this course, the lecturers might deploy several teaching learning strategies, including Project Work, Group Presentation, Lecture, and Self-Assessment.

6. Textbooks and Other Resources

6.1 Textbooks

- 1. <u>Ian Millington. (2009)</u>. *Artificial intelligence for games*. 02. Morgan Kaufmann Publishers. Burlington. <u>ISBN: 9780123747310</u>.
- 2. Steven Halim, Felix Halim. (2013). Competitive Programming 3. 03. Lulu. ISBN: B00FG8MNN8.
- 3. Y. Daniel Liang. (2015). *Introduction to Java Programming*. 10. Pearson Education. Essex. ISBN: 9781292070018.

The book in the first list is a must to have for each student.

6.2 Other Resources

1. http://www.youtube.com/watch?v=wsmMOJj6ETo

7. Schedule

Theory				
	Session/ Mode	Related LO	Topics	References
0	1 F2F	LO 1	Introduction - What is AI - Model of Game AI - Algorithms, Data Structures, and Representations - On the Website	 Introduction Artificial intelligence for games, Chapter 1 An Intro to Video Game AI for Beginners and Young Programmers, http://www.youtube.com/wat ch?v=wsmMOJj6ETo
	2 F2F	LO 1	Game Al - The Complexity Fallacy - The Kind of Al in Games - Speed and Memory - The Al Engine	 Game Al Artificial intelligence for games, Chapter 2
	3 LC GSLC LC		Movement: Steering Behaviors - The Basics of Movement Algorithms - Kinematic Movement Algorithms - Steering Behaviors - Combining Steering Behaviors	 Movement: Steering Behaviors Artificial intelligence for games, Chapter 3
4 F2F		LO 1 LO 2	Movement: Predicting Physics & Jumping - Aiming and Shooting - Projectile Trajectory - The Firing Solution - Projectiles with Drag - Iterative Targeting - Jump Points - Landing Pads - Hole Fillers	 Movement: Predicting Physics & Jumping Artificial intelligence for games, Chapter 3
5 LO 2 F2F LO 3			Movement: Coordinated Movement, Motor Control & Movement in the Third Dimension - Formations - Slot	 Movement: Coordinated Movement, Motor Control & Movement in the Third Dimension

r				
			 Output Filtering Capability-Sensitive Steering Rotation in Three Dimensions Align Face 	 Artificial intelligence for games, Chapter 3
-	6 GSLC	LO 2 LO 3	Pathfinding: Djikstra & A* - The Pathfinding Graph - Dijkstra - A*	 Pathfinding: Djikstra & A* Artificial intelligence for games, Chapter 4
	7 F2F	LO 2 LO 3	 Pathfinding: Hierarchical & Continuous Time Pathfinding The Hierarchical Pathfinding Graph Pathfinding on the Hierarchical Graph Hierarchical Pathfinding on Exclusions Continuous Time Pathfinding Movement Planning 	 Pathfinding: Hierarchical & Continuous Time Pathfinding Artificial intelligence for games, Chapter 4
	8 F2F	LO 2 LO 3	Decision Making: Decision Tree & State Machines - Overview of Decision Making - Decision Trees - Random Decision Trees - State Machines - Hard-Coded FSM - Hierarchical State Machines - Combining Decision Trees and State Machines	 Decision Making: Decision Tree & State Machines Artificial intelligence for games, Chapter 5
•	9 F2F	LO 2 LO 3	 Decision Making: Behavior Tree, Fuzzy Logic & Markov Systems Implementing Behavior Trees Decorators Concurrency and Timing Fuzzy Logic Decision Making Fuzzy State Machines Markov Processes Markov State Machine 	 Decision Making: Behavior Tree, Fuzzy Logic & Markov Systems Artificial intelligence for games, Chapter 5
	10 F2F	LO 2 LO 3	Decision Making: Goal-Oriented Behavior & Rule- Based System - Goal-Oriented Behavior - Simple Selection - Overall Utility - Timing - Rule-Based Systems - Rule Arbitration - Unification - Rete - Extensions	 Decision Making: Goal- Oriented Behavior & Rule- Based System Artificial intelligence for games, Chapter 5
-	11 GSLC	LO 3 LO 4	Learning: Parameter Modification & Action Prediction - Learning Basics - Parameter Modification - Action Prediction	 Learning: Parameter Modification & Action Prediction Artificial intelligence for games, Chapter 7
	12 F2F	LO 3 LO 4	Learning: Decision Learning - Naive Bayes Classifiers - Decision Tree Learning - Reinforcement Learning - Artificial Neural Networks	 Learning: Decision Learning Artificial intelligence for games, Chapter 7
	13 F2F	LO 4	Project Presentation - Project Presentation	 Project Presentation Artificial intelligence for games, Chapter 1, 2, 3, 4, 5, 7

Session/ Mode	Related LO	Topics	References
1 F2F	LO 1	Review Java Fundamental - Input and Output - Collection (Array, Array List, Vector, Hash Map) - Class and Object - Constructor	 Review Java Fundamental Introduction to Java Programming, Chapter 1, 2, 7, 8, 9
2 F2F	LO 1 LO 2	Recursive, Memoization, Bot Movement - Recursive - Memoization - Bot Movement	 Recursive, Memoization, Bot Movement Competitive Programming 3, Chapter 3 Introduction to Java Programming, Chapter 6
3 F2F	LO 2	Dynamic Programming I - Coin Change Problem - Travelling Salesman Problem (TSP)	 Dynamic Programming I Artificial intelligence for games, Chapter 3 Competitive Programming 3, Chapter 3
4 F2F	LO 2	Dynamic Programming II - Greedy Algorithm - Anagram - Permutation and Combination	 Dynamic Programming II Artificial intelligence for games, Chapter 3 Competitive Programming 3, Chapter 3
5 F2F	LO 2	Graph Theory I - Prim - Kruskal	 Graph Theory I Artificial intelligence for games, Chapter 4 Competitive Programming 3, Chapter 4, 9
6 F2F		Graph Theory II - Dijkstra - A*	Chapter 4, 8 - Graph Theory II - Artificial intelligence for games, Chapter 4 - Competitive Programming 3, Chapter 3, 4, 8
7 F2F	LO 2 LO 3	Decision Making - Minimax Tree - Alpha Beta Pruning	 Decision Making Artificial intelligence for games, Chapter 8 Competitive Programming 3, Chapter 3,4, 8
8 F2F	LO 2 LO 3	Quiz - Quiz	 Quiz Artificial intelligence for games, Chapter 4, 8 Competitive Programming 3, Chapter 3, 4, 8 Introduction to Java Programming, 1, 2, 6, 7, 8, 9
9 F2F	LO 3	Introduction to 2D Graphics I - Draw Shape - Game Loop - Input System (Mouse and Keyboard) - Collision	 Introduction to 2D Graphics I Artificial intelligence for games, Chapter 3 Introduction to Java Programming, Chapter 15
10 F2F	LO 3	Introduction to 2D Graphics II - Draw Shape - Game Loop - Input System (Mouse and Keyboard) - Collision	 Introduction to 2D Graphics II Artificial intelligence for games, Chapter 3 Introduction to Java Programming, Chapter 15
11 F2F	LO 3 LO 4	Steering Behaviors - Vector 2D - Seek and Flee	 Steering Behaviors Artificial intelligence for games, Chapter 3

		- Gravity	
12 F2F	LO 4	Project Collection - Project Collection	 Project Collection Artificial intelligence for games, Chapter 3, 4, 8 Competitive Programming 3, Chapter 3, 4, 8 Introduction to Java Programming, Chapter 1, 2, 6, 7, 8, 9, 15

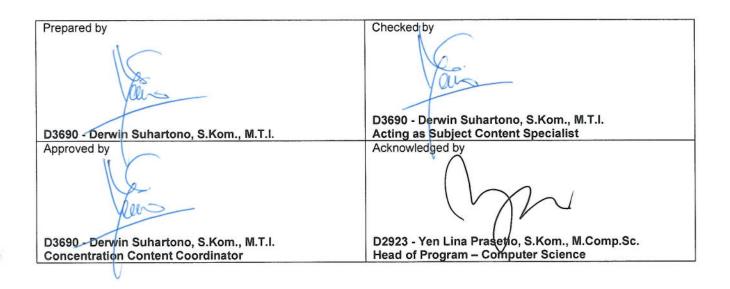
8. Evaluation

Theory

Accordment Activity	Woight	Learning Outcomes			
Assessment Activity	Weight	1	2	3	4
Assignment	25%				\checkmark
Mid Exam	35%				
Final Exam	40%		\checkmark	\checkmark	\checkmark

Practicum

Accomment Activity	Waight	Learning Outcomes			
Assessment Activity	Weight	1	2	3	4
Project	60%	\checkmark	\checkmark	\checkmark	\checkmark
Worksheet	40%	\checkmark	\checkmark	\checkmark	\checkmark


Final Evaluation Score

Aspects	Weight
Theory	80%
Practicum	20%
BIN	US

9. A. Assessment Rubric (Study Program Specific Outcomes)

			Proficiency Level			
	LO	Indicators	Excellent (85 – 100)	Good (75 – 84)	Average (65 – 74)	Poor (<= 64)
	LO 1	1.1. Ability to identify fundamental issues occur in implementing AI in Games	Fundamenta l issues occur in implementin g Al in Games are clearly	Fundamenta l issues occur in implementin g Al in Games are identified	Fundamenta l issues occur in implementin g Al in Games are not well	Fundamenta l issues occur implementin g Al in Games are not identified
		1.2. Ability to explain utilization of Al techniques in Games	identified Utilization of AI techniques in Games is totally mastered	Utilization of AI techniques in Games is affordable	identified Utilization of AI techniques in Games is not really realized	Utilization of AI techniques in Games is unknown
	LO 2	2.1. Ability to explain fundamental concepts of AI techniques in Games	fundamental concepts of AI techniques in Games are totally mastered	fundamental concepts of AI techniques in Games are affordable	fundamental concepts of AI techniques in Games are not really realized	fundamental concepts of AI techniques in Games are unknown
		2.2. Ability to relate one concept to another	Relationship one concept to another is clearly identified	Relationship one concept to another is identified	Relationship one concept to another is not well defined	Relationship one concept to another is not defined
		3.1. Ability to build games from Al techniques	Solutions from AI concepts are very well constructed	Solutions from AI concepts are constructed	Solutions from AI concepts are incompleted	Solutions from AI concepts are not defined
	LO 3	3.2. Ability to extract some functionality from AI techniques in Games	Some functionality from AI techniques are extracted	Some functionality from AI techniques are partly extracted	Some functionality from AI techniques are unconvincin g	Some functionality from AI techniques are not extracted
	LO 4	4.1. Ability to build AI-based Games	Al-based Games are well built without any mistakes	Al-based Games are well built	Al-based Games are built but still have many mistakes	Al-based Games are not able to be built
		4.2. Ability to evaluate AI-based Games	AI-based Games are very well evaluated	AI-based Games are appropriately evaluated	AI-based Games are little bit evaluated	AI-based Games are not able to be evaluated

Course Outline

