People Innovation Excellence

DEEP LEARNING (2 CREDITS)

Learning Outcomes:

On successful completion of this course, students will be able to: LO1 – explain fundamental concepts of deep learning; LO2 – execute a proper deep learning experimentation workflow; LO3 – analyze architecture of deep learning models; LO4 – Compose a deep learning code in Python programming.

Topics:

  1. Introduction to Deep Learning;
  2. Practical Aspect in Deep Learning;
  3. Basic of Neural Network;
  4. Deep Neural Network;
  5. Introduction of Convolutional Neural Network;
  6. Convolutional Neural Network for Image Classification;
  7. Convolutional Neural Network for Object Detection;
  8. Convolutional Neural Network for Image Segmentation;
  9. Recurrent Neural Network;
  10. Long Short Term Memory (LSTM);
  11. Autoencoder;
  12. Generative Advesarial Network;
  13. Review.

Published at : Updated

Periksa Browser Anda

Check Your Browser

Situs ini tidak lagi mendukung penggunaan browser dengan teknologi tertinggal.

Apabila Anda melihat pesan ini, berarti Anda masih menggunakan browser Internet Explorer seri 8 / 7 / 6 / ...

Sebagai informasi, browser yang anda gunakan ini tidaklah aman dan tidak dapat menampilkan teknologi CSS terakhir yang dapat membuat sebuah situs tampil lebih baik. Bahkan Microsoft sebagai pembuatnya, telah merekomendasikan agar menggunakan browser yang lebih modern.

Untuk tampilan yang lebih baik, gunakan salah satu browser berikut. Download dan Install, seluruhnya gratis untuk digunakan.

We're Moving Forward.

This Site Is No Longer Supporting Out-of Date Browser.

If you are viewing this message, it means that you are currently using Internet Explorer 8 / 7 / 6 / below to access this site. FYI, it is unsafe and unable to render the latest CSS improvements. Even Microsoft, its creator, wants you to install more modern browser.

Best viewed with one of these browser instead. It is totally free.

  1. Google Chrome
  2. Mozilla Firefox
  3. Opera
  4. Internet Explorer 9
Close