People Innovation Excellence

MACHINE LEARNING (4 Credits)

Learning Outcomes:

On successful completion of this course, student will be able to:

  1. Explain the fundamental of machine learning concept
  2. Interpret the distribution of dataset using regression method
  3. Experiment classification and clustering algorithm from given dataset

Topics:

  1. Introduction to Machine Learning 1
  2. Introduction to Machine Learning 2
  3. Probability and stochastic processes 1
  4. Probability and stochastic processes 2
  5. Learning in parametric modeling 1
  6. Learning in parametric modeling 2
  7. Mean-Square Error linear estimation
  8. Feature Engineering: Feature Extraction & Selection
  9. The nearest neighbor rule (KNN) & Logistic regression
  10. Support Vector Machine
  11. Classification Tree
  12. Clustering
  13. Review & project presentation

Published at : Updated

Periksa Browser Anda

Check Your Browser

Situs ini tidak lagi mendukung penggunaan browser dengan teknologi tertinggal.

Apabila Anda melihat pesan ini, berarti Anda masih menggunakan browser Internet Explorer seri 8 / 7 / 6 / ...

Sebagai informasi, browser yang anda gunakan ini tidaklah aman dan tidak dapat menampilkan teknologi CSS terakhir yang dapat membuat sebuah situs tampil lebih baik. Bahkan Microsoft sebagai pembuatnya, telah merekomendasikan agar menggunakan browser yang lebih modern.

Untuk tampilan yang lebih baik, gunakan salah satu browser berikut. Download dan Install, seluruhnya gratis untuk digunakan.

We're Moving Forward.

This Site Is No Longer Supporting Out-of Date Browser.

If you are viewing this message, it means that you are currently using Internet Explorer 8 / 7 / 6 / below to access this site. FYI, it is unsafe and unable to render the latest CSS improvements. Even Microsoft, its creator, wants you to install more modern browser.

Best viewed with one of these browser instead. It is totally free.

  1. Google Chrome
  2. Mozilla Firefox
  3. Opera
  4. Internet Explorer 9
Close