People Innovation Excellence

Time Series Analysis

Learning Outcomes

After completing this course, the students will be able to: Select forecasting model; Apply the model of time series analysis; Describe the patterns of time series; Predict time series data.

Topics

  1. Time series and forecasting models
  2. Exploring data patterns and choosing forecasting techniques
  3. Moving average and smoothing methods : Naire models, forecasting methods based on averaging, Experimental smoothing methods
  4. Time series and their components, Decomposition trend, Seasonally, Adjusted data, Forecasting a seasonal time series, The sensus II, Decomposition methods
  5. Regression with time series data
  6. Autocorrelation, Durbin-Watson test for serial autocorrelation, Heterocedasticity
  7. The Box-Jenkins (ARIMA) methodology

 


Published at :

Periksa Browser Anda

Check Your Browser

Situs ini tidak lagi mendukung penggunaan browser dengan teknologi tertinggal.

Apabila Anda melihat pesan ini, berarti Anda masih menggunakan browser Internet Explorer seri 8 / 7 / 6 / ...

Sebagai informasi, browser yang anda gunakan ini tidaklah aman dan tidak dapat menampilkan teknologi CSS terakhir yang dapat membuat sebuah situs tampil lebih baik. Bahkan Microsoft sebagai pembuatnya, telah merekomendasikan agar menggunakan browser yang lebih modern.

Untuk tampilan yang lebih baik, gunakan salah satu browser berikut. Download dan Install, seluruhnya gratis untuk digunakan.

We're Moving Forward.

This Site Is No Longer Supporting Out-of Date Browser.

If you are viewing this message, it means that you are currently using Internet Explorer 8 / 7 / 6 / below to access this site. FYI, it is unsafe and unable to render the latest CSS improvements. Even Microsoft, its creator, wants you to install more modern browser.

Best viewed with one of these browser instead. It is totally free.

  1. Google Chrome
  2. Mozilla Firefox
  3. Opera
  4. Internet Explorer 9
Close