People Innovation Excellence
 

Data Mining (4 Credits)

Learning Outcomes:

Critically evaluate the value and application of data mining for business and customer relationship management; Critically discuss the variety of methods constituting data mining including data analysis, statistical methods, machine learning and model validation techniques; Understand and apply the foundations of modeling approaches such as linear regression, linear classifiers, decision tree models and clustering; Communicate technically complex issues coherently and precisely

Topics:

  1. Overview of data mining
  2. Data visualization and pre-processing
  3. Data mining in practice
  4. Models and patterns
  5. Introduction to data mining using SPSS and other software
  6. Classification trees
  7. Predictive modeling
  8. Descriptive modeling
  9. Classification models
  10. Clustering

Published at :

Periksa Browser Anda

Check Your Browser

Situs ini tidak lagi mendukung penggunaan browser dengan teknologi tertinggal.

Apabila Anda melihat pesan ini, berarti Anda masih menggunakan browser Internet Explorer seri 8 / 7 / 6 / ...

Sebagai informasi, browser yang anda gunakan ini tidaklah aman dan tidak dapat menampilkan teknologi CSS terakhir yang dapat membuat sebuah situs tampil lebih baik. Bahkan Microsoft sebagai pembuatnya, telah merekomendasikan agar menggunakan browser yang lebih modern.

Untuk tampilan yang lebih baik, gunakan salah satu browser berikut. Download dan Install, seluruhnya gratis untuk digunakan.

We're Moving Forward.

This Site Is No Longer Supporting Out-of Date Browser.

If you are viewing this message, it means that you are currently using Internet Explorer 8 / 7 / 6 / below to access this site. FYI, it is unsafe and unable to render the latest CSS improvements. Even Microsoft, its creator, wants you to install more modern browser.

Best viewed with one of these browser instead. It is totally free.

  1. Google Chrome
  2. Mozilla Firefox
  3. Opera
  4. Internet Explorer 9
Close