People Innovation Excellence

DEEP LEARNING AND OPTIMIZATION (4 SCU)

Learning Outcomes:

On successful completion of this course, students will be able to: LO1 – explain the fundamental deep learning theory; LO2 – execute a proper deep learning experimentation workflow; LO3 – analyze architecture of deep learning model; LO4 – compose a deep learning code in Python programming.

Topics:

  1. Machine Learning Overview;
  2. Multi-layer Perceptrons;
  3. Deep Neural Networks;
  4. Convolutional Neural Networks;
  5. Recurrent Neural Networks;
  6. Attention and Memory;
  7. Autoencoders and Autoregressive Models;
  8. Generative Adversarial Networks;
  9. Variational Autoencoders;
  10. Self-supervised Learning;
  11. Introduction to Deep Learning;
  12. Understanding and Visualizing CNN;
  13. Project Presentation.

Published at : Updated

Periksa Browser Anda

Check Your Browser

Situs ini tidak lagi mendukung penggunaan browser dengan teknologi tertinggal.

Apabila Anda melihat pesan ini, berarti Anda masih menggunakan browser Internet Explorer seri 8 / 7 / 6 / ...

Sebagai informasi, browser yang anda gunakan ini tidaklah aman dan tidak dapat menampilkan teknologi CSS terakhir yang dapat membuat sebuah situs tampil lebih baik. Bahkan Microsoft sebagai pembuatnya, telah merekomendasikan agar menggunakan browser yang lebih modern.

Untuk tampilan yang lebih baik, gunakan salah satu browser berikut. Download dan Install, seluruhnya gratis untuk digunakan.

We're Moving Forward.

This Site Is No Longer Supporting Out-of Date Browser.

If you are viewing this message, it means that you are currently using Internet Explorer 8 / 7 / 6 / below to access this site. FYI, it is unsafe and unable to render the latest CSS improvements. Even Microsoft, its creator, wants you to install more modern browser.

Best viewed with one of these browser instead. It is totally free.

  1. Google Chrome
  2. Mozilla Firefox
  3. Opera
  4. Internet Explorer 9
Close